Traduzione

Il presente blog è scritto in Italiano, lingua base. Chi desiderasse tradurre in un altra lingua, può avvalersi della opportunità della funzione di "Traduzione", che è riporta nella pagina in fondo al presente blog.

This blog is written in Italian, a language base. Those who wish to translate into another language, may use the opportunity of the function of "Translation", which is reported in the pages.

Cerca nel blog

venerdì 15 marzo 2013

Ancient microbes found in Antarctic lake



Nearly 65 feet beneath the icy surface of a remote Antarctic lake, scientists from NASA, the Desert Research Institute (DRI) in Reno, Nev., the University of Illinois at Chicago, and nine other institutions, have uncovered a community of bacteria existing in one of Earth's darkest, saltiest and coldest habitats.
Lake Vida, the largest of several unique lakes found in the McMurdo Dry Valleys, contains no oxygen, is mostly frozen and possesses the highest nitrous oxide levels of any natural water body on Earth. A briny liquid, which is approximately six times saltier than seawater, percolates throughout the icy environment where the average temperature is minus 8 degrees Fahrenheit. The international team of scientists published their findings online Nov. 26, in the Proceedings of the National Academy of Sciences Early Edition.
"This study provides a window into one of the most unique ecosystems on Earth," said Alison Murray, a molecular microbial ecologist and polar researcher at the DRI and the report's lead author. "Our knowledge of geochemical and microbial processes in lightless icy environments, especially at subzero temperatures, has been mostly unknown up until now. This work expands our understanding of the types of life that can survive in these isolated, cryoecosystems and how different strategies may be used to exist in such challenging environments."
Despite the very cold, dark and isolated nature of the habitat, the report finds the brine harbors a surprisingly diverse and abundant variety of bacteria that survive without a current source of energy from the sun. Previous studies of Lake Vida dating back to 1996 indicate the brine and its inhabitants have been isolated from outside influences for more than 3,000 years.
"This system is probably the best analog we have for possible ecosystems in the subsurface waters of Saturn's moon Enceladus and Jupiter's moon Europa," said Chris McKay, a senior scientist and co-author of the paper at NASA's Ames Research Center, Moffett Field, Calif.
Murray and her co-authors and collaborators, including Peter Doran, the project's principal investigator at the University of Illinois at Chicago, developed stringent protocols and specialized equipment for their 2005 and 2010 field campaigns to sample from the lake brine while avoiding contaminating the pristine ecosystem.
"The microbial ecosystem discovered at Lake Vida expands our knowledge of environmental limits for life and helps define new niches of habitability," said Adrian Ponce, co-author from NASA's Jet Propulsion Laboratory, Pasadena, Calif., who enumerated viable bacterial spore populations extracted from Lake Vida.
To sample unique environments such as this, researchers must work under secure, sterile tents on the lake's surface. The tents kept the site and equipment clean as researchers drilled ice cores, collected samples of the salty brine residing in the lake ice and assessed the chemical qualities of the water and its potential for harboring and sustaining life.
Geochemical analyses suggest chemical reactions between the brine and the underlying iron-rich sediments generate nitrous oxide and molecular hydrogen. The latter, in part, may provide the energy needed to support the brine's diverse microbial life.
Additional research is under way to analyze the abiotic, chemical interactions between the Lake Vida brine and its sediment, in addition to investigating the microbial community by using different genome sequencing approaches. The results could help explain the potential for life in other salty, cryogenic environments beyond Earth, such as purported subsurface aquifers on Mars.
(NASA news, nov.30,2012)

Amplified Grenhouse Effect Schifta North's Growing Seasoms


Amplified Greenhouse Effect Shifts North's Growing Seasons

March 10, 2013: Vegetation growth at Earth's northern latitudes increasingly resembles lusher latitudes to the south, according to a NASA-funded study based on a 30-year record of ground-based and satellite data sets.
In a paper published Sunday, March 10, in the journal Nature Climate Change, an international team of university and NASA scientists examined the relationship between changes in surface temperature and vegetation growth from 45 degrees north latitude to the Arctic Ocean. Results show temperature and vegetation growth at northern latitudes now resemble those found 4 degrees to 6 degrees of latitude farther south as recently as 1982.
"Higher northern latitudes are getting warmer, Arctic sea ice and the duration of snow cover are diminishing, the growing season is getting longer and plants are growing more," said Ranga Myneni of Boston University's Department of Earth and Environment. "In the north's Arctic and boreal areas, the characteristics of the seasons are changing, leading to great disruptions for plants and related ecosystems."
Of the 10 million square miles (26 million square kilometers) of northern vegetated lands, 34 to 41 percent showed increases in plant growth (green and blue), 3 to 5 percent showed decreases in plant growth (orange and red), and 51 to 62 percent showed no changes (yellow) over the past 30 years. Satellite data in this visualization are from AVHRR and MODIS. Credit: NASA's Goddard Space Flight Center Scientific Visualization Studio Myneni and colleagues used satellite data to quantify vegetation changes at different latitudes from 1982 to 2011. Data used in this study came from NOAA's Advanced Very High Resolution Radiometers (AVHRR) onboard a series of polar-orbiting satellites and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites.
As a result of enhanced warming and a longer growing season, large patches of vigorously productive vegetation now span a third of the northern landscape, or more than 3.5 million square miles (9 million square kilometers). That is an area about equal to the contiguous United States. This landscape resembles what was found 250 to 430 miles (400 to 700 kilometers) to the south in 1982.
"It's like Winnipeg, Manitoba, moving to Minneapolis-Saint Paul in only 30 years," said co-author Compton Tucker of NASA's Goddard Space Flight Center in Greenbelt, Md.
The Arctic's greenness is visible on the ground as an increasing abundance of tall shrubs and trees in locations all over the circumpolar Arctic. Greening in the adjacent boreal areas is more pronounced in Eurasia than in North America.
An amplified greenhouse effect is driving the changes, according to Myneni. Increased concentrations of heat-trapping gasses, such as water vapor, carbon dioxide and methane, cause Earth's surface, ocean and lower atmosphere to warm. Warming reduces the extent of polar sea ice and snow cover, and, in turn, the darker ocean and land surfaces absorb more solar energy, thus further heating the air above them.
"This sets in motion a cycle of positive reinforcement between warming and loss of sea ice and snow cover, which we call the amplified greenhouse effect," Myneni said. "The greenhouse effect could be further amplified in the future as soils in the north thaw, releasing potentially significant amounts of carbon dioxide and methane."
To find out what is in store for future decades, the team analyzed 17 climate models. These models show that increased temperatures in Arctic and boreal regions would be the equivalent of a 20-degree latitude shift by the end of this century relative to a period of comparison from 1951-1980. However, researchers note that plant growth in the north may not continue on its current trajectory. The ramifications of an amplified greenhouse effect, such as frequent forest fires, outbreak of pest infestations and summertime droughts, may slow plant growth. Also, warmer temperatures alone in the boreal zone do not guarantee more plant growth, which also depends on the availability of water and sunlight.
"Satellite data identify areas in the boreal zone that are warmer and dryer and other areas that are warmer and wetter," said co-author Ramakrishna Nemani of NASA's Ames Research Center in Moffett Field, Calif. "Only the warmer and wetter areas support more growth."
"We found more plant growth in the boreal zone from 1982 to 1992 than from 1992 to 2011, because water limitations were encountered in the later two decades of our study," said co-author Sangram Ganguly of the Bay Area Environmental Research Institute and NASA Ames.
Data, results and computer codes from this study will be made available on NASA Earth Exchange (NEX), a collaborative supercomputing facility at Ames Research Center, Moffett Field, Calif. NEX is designed to bring scientists together with data, models and computing resources to accelerate research and innovation and provide transparency. (NASA Science march 10,2013)

Antarctic and Artic Insects Use Different Genetic Mechanisms to Cope With LAck of Water


Genomic techniques facilitate discovery that gene expression causes disparity
March 11, 2013
Although they live in similarly extreme ecosystems at opposite ends of the world, Antarctic insects appear to employ entirely different methods at the genetic level to cope with extremely dry conditions than their counterparts that live north of the Arctic Circle, according to National Science Foundation- (NSF) funded researchers.
Writing in the Proceedings of the National Academy of Sciences, the researchers concluded, "Polar arthropods have developed distinct... mechanisms to cope with similar desiccating conditions."
The researchers noted that aside from the significance of the specific discovery about the genetics of how creatures cope in polar environments, the new finding is important because it shows how relatively new and developing scientific techniques, including genomics, are opening new scientific vistas in the Polar Regions, which were once thought to be relatively uniform and, relatively speaking, scientifically sterile environments.
"It's great to have an Antarctic animal that has entered the genomic era," said David Denlinger, a distinguished professor of entomology at Ohio State University and a co-author of the paper. "This paper, which analyzed the expression of thousands of genes in response to the desiccating environment of Antarctica, is just one example of the power that the genomic revolution offers for advancing polar science. "
The collaborative research--which included contributions from scientists at Ohio State University, the Centre National de la Recherche Scientifique (National Center for Scientific Research) in France, Catholic University of Louvain in Belgium, Stanford University, and Miami University in Ohio--was supported in part by the Division of Polar Programs in NSF's Geosciences Directorate.
Polar Programs manages the U.S. Antarctic Program, through which it coordinates all U.S. research on the southernmost continent and aboard ships in the Southern Ocean as well as providing the necessary logistical support.
The finding also adds to the developing picture of the Polar Regions as having similarities and yet subtle and perhaps very important differences, previously undetected by science. NSF-funded scientists late last year, for example, published researchindicating that differing contributions of freshwater from glaciers and streams to the Arctic and Southern oceans may be responsible for the fact that the majority of microbial communities that thrive near the surface of the Polar oceans share few common members.
Although Antarctica's surrounding oceans and coastal margins are home to a variety of large creatures such as seals, penguins and whales, insect life is rare, except on the Antarctic Peninsula.
There, the Antarctic midge, Belgica antarctica, occupies its unique ecological niche.
The research team that produced the new findings collected specimens for their research from offshore islands near NSF's Palmer Station on Anvers Island in the Peninsula region.
Surrounded by an ocean, the Antarctic continent is a polar desert where creatures have adapted to life with infrequent access to liquid water. The researchers note that Antarctic midge larvae, for example, "are remarkably tolerant of dehydration, surviving losses of up to 70 percent of their body water."
They also note that, in general, "insects, in particular, are at high risk of dehydration because of their small body size and consequent high surface-area-to-volume ratio."
Among Antarctic insects, the ability to tolerate dehydration is an important evolutionary development, allowing the creatures to successful survive the cold and dry southern winter.
"The loss of water enhances acute freezing tolerance," they write. "In addition, overwintering midge larvae are capable of undergoing another distinct form of dehydration, known as cryoprotective dehydration.
Cryoprotective dehydration is a mechanism in which a gradual decrease in temperature in the presence of environmental ice "creates a vapor pressure gradient that draws water out of the body, thereby depressing the body fluid melting point and allowing larvae to remain unfrozen at subzero temperatures."
The researchers compared the midge's strategy to those of other terrestrial arthropods that cope with prolonged periods when water is lacking, including the Arctic springtailMegaphorura arctica and Folsomia candida, which are more widely distributed across the globe; both species are members of a group of arthropods, which are closely related to insects, known as Collembola.
The differences, they concluded, lie in the way that various genes express themselves.
After a detailed analysis of gene expression in the various species, the researchers concluded that "although B. antarcticaand M. arctica are adapted to similar environments, our analysis indicated very little overlap in expression profiles between these two arthropods."
They add that "these differences in expression patterns may reflect different strategies for combating dehydration; whereasB. antarctica shuts down metabolic activity and waits for favorable conditions to return, F. candida [instead] relies on active water-vapor absorption to restore water balance during prolonged periods of desiccation."
They further add that because of the taxonomic difference between the Antarctic midge and the collembolan species with which gene expression was compared, more work is needed "to better understand the evolutionary physiology of dehydration tolerance in this taxonomic family."
(NSF,march 11,2013)

Clearest evidence yet of polar ice losses




After two decades of satellite observations, an international team of experts brought together by ESA and NASA has produced the most accurate assessment of ice losses from Antarctica and Greenland to date. This study finds that the combined rate of ice sheet melting is increasing.
The new research shows that melting of the Antarctic and Greenland ice sheets has added 11.1 mm to global sea levels since 1992.
 This amounts to about 20% of all sea-level rise over the survey period.
About two thirds of the ice loss was from Greenland, and the remainder was from Antarctica.Although the ice sheet losses fall within the range reported by the Intergovernmental Panel on Climate Change in 2007, the spread of the estimate at that time was so broad that it was not clear whether Antarctica was growing or shrinking.
The new estimates are a vast improvement – more than twice as accurate – thanks to the inclusion of more satellite data, and confirm that both Antarctica and Greenland are losing ice.
The study also shows that the combined rate of ice sheet melting has increased over time and, altogether, Greenland and Antarctica are now losing more than three times as much ice, equivalent to 0.95 mm of sea-level rise per year, as they were in the 1990s, equivalent to 0.27 mm of sea level rise per year.  
http://www.esa.int/global_imgs/spacer.gif
The 47 experts combined observations from 10 different satellite missions to reconcile the differences between dozens of earlier ice sheet studies and produce the first consistent measurement of polar ice sheet changes. Earth observation satellites are key to monitoring the polar ice because they carry instruments that measure changes in the thickness of the ice sheets, fluctuations in the speed of the outlet glaciers and even small changes in Earth’s gravity field caused by melting ice.
As outlined in the paper ‘A Reconciled Estimate of Ice Sheet Mass Balance published today in Science, the researchers carefully matched time periods and survey areas, and combined measurements from European, Canadian, American and Japanese satellites. The measurement were acquired by instruments such as the radar altimeters and synthetic aperture radars flown on ESA’s ERS-1, ERS-2 and Envisat missions from 1991.
“The success of this venture is due to the cooperation of the international scientific community, and to the provision of precise satellite sensors by our space agencies,” said Professor Andrew Shepherd from the University of Leeds and one of the leaders of the study.“Without these efforts, we would not be in a position to tell people with confidence how Earth’s ice sheets have changed, and to end the uncertainty that has existed for many years.” The study also found variations in the pace of Ice sheet in Antarctica and Greenland.
“The rate of ice loss from Greenland has increased almost five-fold since the mid-1990s.
“In contrast, while the regional changes in Antarctic ice over time are sometimes quite striking, the overall balance has remained fairly constant – at least within the certainty of the satellite measurements we have to hand,” said co-leader of the study Dr Erik Ivins from NASA’s Jet Propulsion Laboratory.
The Ice Sheet Mass Balance Inter-comparison Exercise is a collaboration between 47 researchers from 26 laboratories, supported by ESA and NASA.
Europe’s Global Monitoring for Environment and Security programme will continue to monitor changes in the polar ice sheets during the coming decades, with the SAR and radar altimeter sensors on the Sentinel-1 and Sentinel-3 satellite series, scheduled to be launched from 2013 onwards.
 (ESA news, nov. 30,2012)